If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $
| 2=-9y^2+4y | | 4(x+1)=104 | | 7y^2+3=0 | | 7s^2-s=0 | | 3q^2+6q+3=0 | | (2x+1)^3/4=27 | | -4(x-8)=-6(4+3x | | 6w^2-3w+1=0 | | 1.18=y-73/12 | | 12/x+10=16 | | 1.08=y-67/15 | | x/3-18=-15 | | 6x+(3x-)+(7+5)=180 | | 5^(4x-2)=120 | | -3r+-10=5 | | X=3x/4+5/2=6 | | 4s-6=14 | | -3=y/4-6 | | W=16-7w | | -16+3n=-8=5n | | a/3-2=2 | | -10x+17+-17x-1=-32+1 | | 4n+36=-4 | | q^2+69=0 | | x2-6x=-2 | | (X)*(x-1)=156 | | h^2-26=0 | | s^2+17=17 | | m^2=39 | | 5h^2=0 | | 5i+4=14. | | 7x+5x+6=-2+2(5x+10) |